Генетика, молекулярная биология и генная инженерия
Зачатки генетики существовали еще в доисторические времена, когда люди одомашнивали животных и культивировали растения. Однако основы современных представлений о механизмах наследственности были заложены только в середине XIX века.
Монах Грегор Мендель занимался изучением гибридизации растений в Августинском монастыре в Брюнне (Брно), ныне на территории Чехии.
В 1865 году он обнародовал на заседании местного общества естествоиспытателей результаты исследований о передаче по наследству признаков при скрещивании гороха. Эта работа "Опыты над растительными гибридами" была опубликована в трудах общества в 1866 году. Сформулированные Менделем закономерности наследования признаков позже получили название законов Менделя. При жизни его работы были малоизвестны и воспринимались критически. Однако принципиальные результаты его опытов были поняты и оценены наукой лишь в 1900 году, когда голландский ученый Х. де Фриз, немецкий - К. Корренс и австрийский - Э. Чермак вторично открыли законы наследования признаков, установленные Менделем.
После этого работы Менделя вновь привлекли внимание биологов. В 1905-1906 гг. английский натуралист Уильям Бэтсон ввел в употребление название новой научной дисциплины: "генетика", а в 1909 году датский ботаник Вильгельм Йоханнсен - термин "ген".
Рис. 10.1. Грегор Мендель
В 1910-х годах американский биолог Томас Хант Морган (1866-1945), один из основоположников генетики, лауреат Нобелевской премии 1933 года, и его сотрудники обосновали хромосомную теорию наследственности. Эти ученые доказали, что наследственные факторы - гены - размещаются в хромосомах и что они расположены в них линейно и сцеплены между собой, а во время созревания половых клеток они могут разъединяться. Школе Моргана удалось установить порядок расположения генов в хромосомах для некоторых животных и растений - мухи дрозофилы, кур, кукурузы, ряда бактерий. Муха дрозофила стала излюбленным подопытным насекомым для генетиков из-за ее способности быстро давать потомство, что очень удобно для изучения наследственности.
Рис. 10.2. Томас Морган
Первые работы по генетике в России были начаты в начале XX века. После революции и гражданской войны началось стремительное организационное развитие науки. В 1920-1930 годах выдающийся вклад в развитие генетики внесли советские биологи Н.К. Кольцов (1872-1940) и Н.И. Вавилов (1887-1943). Именно Н.К. Кольцов в 1928 году высказал предположение, что хромосомы - это гигантские молекулы, и обосновал необходимость изучения механизма наследственности на молекулярном уровне.
Рис. 10.3. Н.К. Кольцов
Рис. 10.4. Н.И. Вавилов
К концу 1930-х годов в СССР была создана обширная сеть научно-исследовательских институтов и опытных станций (в Академии наук СССР и во Всесоюзной академии сельскохозяйственных наук имени Ленина (ВАСХНИЛ)), а также вузовских кафедр генетики. Признанными лидерами направления были Н. И. Вавилов, Н. К. Кольцов, А. С. Серебровский, С. С. Четвериков и др. В СССР издавали переводы трудов иностранных генетиков, в том числе Т. Х. Моргана, Г. Мёллера, ряд генетиков участвовали в международных программах научного обмена. Американский генетик Г. Мёллер работал в СССР (1934-1937), советские генетики работали за границей. Н.В. Тимофеев-Ресовский - в Германии (с 1925 г.), Ф.Г. Добржанский - в США (с 1927 г.).
В 1930-е гг. в рядах генетиков и селекционеров наметился раскол, связанный с энергичной деятельностью лжеученого Т.Д. Лысенко и его преспешника И.И. Презента. По инициативе генетиков был проведен ряд дискуссий, направленных на борьбу с подходом Лысенко, но их результаты были довольно неопределенными.
На рубеже 1930-1940-х гг. в ходе сталинского Большого террора многие из видных генетиков были арестованы, многие расстреляны или погибли в тюрьмах (в том числе Н.И. Вавилов). После войны дебаты возобновились с новой силой. Генетики, опираясь на авторитет международного научного сообщества, снова попытались склонить чашу весов в свою сторону, однако с началом Холодной войны ситуация значительно изменилась. В 1948 году на августовской сессии ВАСХНИЛ Т.Д.
Лысенко, пользуясь поддержкой И.В. Сталина, объявил генетику лженаукой. Лысенко воспользовался некомпетентностью партийного руководства наукой, "пообещав партии" быстрое создание новых высокопродуктивных сортов зерна ("ветвистая пшеница") и др. С этого момента начался период гонений на генетику, который получил название лысенковщины и продолжался вплоть до снятия Н.С. Хрущева с поста генерального секретаря ЦК КПСС в 1964 г.
Рис. 10.5. С.С. Чевериков
Рис. 10.6. Н.В. Тимофеев-Ресовский
И только с середины 1960-х г. в нашей стране началось восстановление генетики, понесшей колоссальный научный и кадровый урон в результате сталинского террора и антинаучной "деятельности" Лысенко.
А в это время в мире генетика развивалась стремительными темпами, и был сделан ряд выдающихся открытий.
Еще в 1930-1940-х гг. над разгадкой генетического кода живой природы задумывались крупнейшие физики-теоретики Эрвин Шредингер, Макс Дельбрюк, генетик Н.В. Тимофеев-Ресовский. В 1945 году Э. Шредингер опубликовал книгу "ЧТО ТАКОЕ ЖИЗНЬ с точки зрения физики?" (What is life?). В главе "Подход классического физика к предмету" он писал: "Большой, важный и очень часто обсуждаемый вопрос заключается в следующем: как могут физика и химия объяснить те явления в пространстве и времени, которые имеют место внутри живого организма?" Книга "Что такое жизньѕ?" сыграла большую роль в проникновении идей физики в биологию. Имя Шредингера, крупного физика, хорошо известно всем физикам и химикам мира. Поэтому его книга во многом способствовала тому, что их внимание было привлечено к проблемам генетики.
Рис. 10.7. Эрвин Шредингер
Одним из крупнейших открытий XX века в биологии явилось установление структуры молекулы ДНК - основного наследственного вещества клетки. Оно было сделано Френсисом Криком, Джеймсом Уотсоном и Морисом Уилкинсом. Рассказывая историю этого открытия, Дж. Уотсон в своей книге "Двойная спираль" писал о Ф.
Крике: "Он бросил физику и занялся биологией после того, как в 1946 г. прочитал книгу известного физика-теоретика Эрвина Шредингера "Что такое жизнь с точки зрения физики?" В этой книге очень изящно излагается предположение, что гены представляют собой важнейшую составную часть живых клеток, а потому понять, что такое жизнь, можно только зная, как ведут себя гены. В то время, когда Шредингер писал свою книгу (в 1944 г.), господствовало мнение, что гены - это особый тип белковых молекул. Однако почти тогда же бактериолог Освальд Эвери проводил опыты, которые показали, что наследственные признаки одной бактериальной клетки могут быть переданы другой при помощи очищенного препарата ДН К".
Рентгеноструктурный анализ ДНК был осуществлен Морисом Уилкинсом и Розалиндой Франклин. Первую рентгенограмму молекулы ДНК Р. Франклин получила в 1951 году.
На основе анализа рентгенограмм ДНК в 1953 году Д. Уотсон и Ф. Крик предложили пространственную модель структуры ДНК. Они предположили, что ее7 гигантские молекулы представляют собой двойную спираль, состоящую из пары нитей, образованных нуклеотидами, расположенными в определенной последовательности. Каждый нуклеотид одной нити спарен с противолежащим нуклеотидом второй нити с помощью водородных связей по правилу комплементарности (аденин в паре с тимином, а гуанин - с цитозином). Модель двойной спирали ДНК Д. Уотсона и Ф. Крика позволила объяснить, как при делении клетки происходит репликация ДНК - процесс копирования дезоксирибонуклеиновой кислоты. При этом генетический материал, зашифрованный в ДНК, удваивается и делится между дочерними клетками.
Две части молекулы ДНК отделяются друг от друга в местах водородных связей, что напоминает расстегивание застежки-молнии. По каждой половине прежней молекулы синтезируется новая молекула ДНК. Последовательность оснований функционирует как матрица, или образец, для образования новых молекул ДНК. Так был доказан матричный принцип воспроизведения наследственного материала, предсказанный великим русским биологом Н.К.
Кольцовым.
Многочисленные экспериментальные данные подтвердили гипотезу Уотсона и Крика.
В 1962 году за открытие структуры ДНК Д. Уотсону, Ф. Крику и М. Уилкинсу была присуждена Нобелевская премия.
Розалинда Франклин вследствие постоянного облучения рентгеновскими лучами в 1956 году заболела раком. Узнав о своей смертельной болезни, она мужественно продолжала работать почти до самой смерти. Она умерла 16 апреля 1958 г. в 37-летнем возрасте, за три года до выдвижения на Нобелевскую премию, которую не получила. В соответствии с уставом Нобелевская премия дается только живым в качестве поощрительного гранта, позволяющего лауреату продолжить научную деятельность.
Рис. 10.8. Розалинда Франклин
Рис. 10.9. Морис Уилкинс
Открытие структуры ДНК стало решающим шагом в понимании того, как генетическая информация передается при делении клетки.
В ДНК используются мономеры 4 типов (нуклеотиды) - аденин, гуанин, цитозин, тимин, которые обозначаются буквами А, Г, Т и Ц. Эти буквы составляют алфавит генетического кода. Поскольку их четыре, то каждая буква содержит два бита информации. В РНК используются те же нуклеотиды, за исключением тимина, который заменен похожим нуклеотидом - урацилом, который обозначается буквой У. PНK присутствуют во всех живых клетках, участвуя в процессах, связанных с передачей генетической информации от ДНК к белку. В молекулах ДНК и РНК нуклеотиды выстраиваются в цепочки, и таким образом получаются последовательности генетических букв. ДНК вместе с белками образует вещество хромосом. Эта модель объясняла, каким образом генетическая информация записывается в молекулах ДНК, и позволила высказать предположение о химических механизмах самовоспроизведения этих молекул. Именно ДНК является носителем генетической информации. Отдельные ее участки соответствуют определенным генам. Молекула ДНК состоит из двух цепей, закрученных одна вокруг другой в спираль. Поэтому она и названа двойной спиралью. Эти цепи построены из большого числа нуклеотидов.
Сочетания рядом стоящих в цепи ДНК нуклеотидов составляет генетический код. Нарушения их последовательности в цепи ДНК приводят к мутациям - наследственным изменениям. ДНК точно воспроизводится при делении клеток. Это обеспечивает передачу наследственных признаков в ряду поколений отдельных клеток и целых организмов. Живые организмы построены из белков. Их в живой природе существует несколько миллиардов, но все они построены всего из 20 мономеров - органических аминокислот. Каждый белок представляет собой цепочку или несколько цепочек аминокислот в строго определенной последовательности. Эта последовательность определяет все биологические свойства данного белка. Набор аминокислот также универсален для почти всех живых организмов.
Рис. 10.10. Джеймс Уотсон
Рис. 10.11. Френсис Крик
Реализация генетической информации - процесс, происходящий внутри каждой живой клетки, во время которого генетическая информация, записанная в ДНК клеточного ядра, воплощается в биологически активных веществах - белках.
Генетический код - существующий в живой природе способ кодирования аминокислотной последовательности белков при помощи последовательности нуклеотидов. Генетический код универсален для всего живого на Земле, он один и тот же у всех организмов (с некоторыми небольшими исключениями), от вирусов до млекопитающих и человека.
В 1954 году физик-теоретик Георгий Гамов опубликовал статью, где первым поднял вопрос генетического кода, доказывая, что "при сочетании 4 нуклеотидов тройками получаются 64 различные комбинации, чего вполне достаточно для "записи наследственной информации", выражая при этом надежду, что "кто-нибудь из более молодых ученых доживет до его расшифровки". В октябре 1968 года Роберту Холли, Хар Коране и Маршаллу Ниренбергу была присуждена Нобелевская премия за расшифровку генетического кода. Но Георгий Антонович Гамов к тому времени уже умер.
Рис. 10.12. Г.А. Гамов
Сочетание нуклеотидов тройками, предсказанная Г.А. Гамовым - это кодон (триплет), единица генетического кода; состоит из 3 последовательных нуклеотидов в молекуле ДНК или РНК.
Последовательность кодона в гене определяет последовательность аминокислот в полипептидной цепи белка, кодируемого этим геном. Передача генетической информации происходит по схеме "ДНК Ґ РНК Ґ белок".
Открытие структуры ДНК положило начало молекулярной генетике и ее важнейшим разделамв - генной инженерии, генетике человека и медицинской генетике. Разрабатываются генетические аспекты проблемы борьбы со злокачественными новообразованиями и преждевременным старением.
Молекулярная генетика - раздел генетики и молекулярной биологии - ставит своей целью познание материальных основ наследственности и изменчивости живых существ путем исследования протекающих на субклеточном, молекулярном уровне процессов передачи, реализации и изменения генетической информации, а также способа ее хранения.
В начале 70-х годов XX века возникла генная инженерия - методы молекулярной биологии и генетики, связанные с целенаправленным конструированием новых, не существующих в природе сочетаний генов. Она основана на извлечении из клеток какого-либо организма гена (кодирующего нужный продукт) или группы генов и соединении их со специальными молекулами ДНК, способными проникать в клетки другого организма (главным образом микроорганизмов) и размножаться в них. Генная инженерия, наряду с клеточной инженерией, лежит в основе современной биотехнологии. Открывает новые пути решения некоторых проблем генетики, медицины, сельского хозяйства. С помощью генетической инженерии был получен ряд биологически активных соединений - инсулин, интерферон и др.
Геном - это совокупность всех генов организма, его полный хромосомный набор. Термин "геном" был предложен Г. Винклером в 1920 году для описания совокупности генов, заключенных в наборе хромосом организмов одного биологического вида.
В 1988 году один из первооткрывателей структуры ДНК Нобелевский лауреат Джеймс Уотсон выступил с предложением создать программу "Геном человека" с целью раскрыть полную структуру генома биологического вида Homo Sapiens (Человека разумного).
К тому времени было уже известно, что наследственный аппарат человека - геном (совокупность всех генов и межгенных участков ДНК) - составляет около 3 млрд нуклеотидных пар. Решение такой грандиозной задачи на том уровне развития генетики казалось нереальным.
В том же 1988 году с аналогичной идеей выступил выдающийся российский молекулярный биолог и биохимик, академик А.А. Баев (1904-1994). С 1989 года в США и в России существуют научные программы "Геном человека", а позднее возникла Международная организация по изучению генома человека (HUGO). Сегодня руководителем Российской национальной программы "Геном человека" является член-корр. РАН Л.Л. Киселев.
Первым важным шагом этой международной программы стало секвенирование - определение последовательности нуклеотидов в ДНК.
К началу XXI века эта сложнейшая задача была выполнена. Число генов в геноме человека оказалось около 35000. Но это лишь первый этап программы. Геном человека прочитан полностью, но он подобен тексту телеграммы на неизвестном языке. Ведь каждый ген представляет собой программу создания определенного вида белка, а таких белков - огромное количество. Дальнейший этап - это расшифровка этого "текста". Частично она выполнена, но полная расшифровка может растянуться на многие годы.
Нобелевскую премию 2006 года по физиологии и медицине - "За открытие механизма РНК-интерференции (подавления экспрессии генов двухцепочечной РНК)" - разделили Эндрю Файр (1959 г. р.) из Медицинской школы Стэнфордского университета и Крэйг Мелло (1960 г. р.) из Медицинской школы Массачусетского университета.
На одной из классических моделей генетического анализа - геноме червя - они изучали способы выключения (так называемой блокировки) отдельных генов. Их целью было понять, за что отвечает каждый ген. В одном из опытов они ввели червям двухцепочечную РНК с таким же кодом, как у блокируемого гена. И ген "выключился". Так почти случайно был открыт феномен РНК-интерференции. По существу, ученые обнаружили фундаментальный механизм контроля над потоком генетической информации.
Это открытие позволило ученым-генетикам понять, зачем нужен и за что отвечает каждый ген. Появилась перспектива лечения врожденных генетических аномалий. Становится реальным заблокировать ген, отвечающий за образование раковых клеток.
Открытие РНК-интерференции дает перспективу "отключать" любые гены, наносящие вред организму.
За последние десятилетия для идентификации личности широко применяется биологический метод анализа ДНК, индивидуального для каждой личности. Он используется для определения факта отцовства, опознания личностей погибших в различных катастрофах и при военных действиях.
Первым человеком, который догадался, каким образом можно идентифицировать личность с использованием методов молекулярной генетики, был английский профессор Алек Джеффрис, опубликовавший в журнале Nature свою статью "Индивидуально-специфичные "отпечатки пальцев" ДНК человека" в июле 1985 года. С помощью этого метода в 1986 году ему удалось доказать невиновность человека, обвиненного в двойном убийстве и даже признавшем свою вину. Настоящий преступник был пойман через год. Так идентификация личности на основании данных ДНК-анализа начала широко применяться в криминалистике. Осуществлялся анализ соответствия биологических образцов, найденных на месте преступления, с образцами, полученными от подозреваемого в совершении преступления, и установление родства по характеристикам ДНК. Несомненным преимуществом метода является то, что даже ничтожно малого количества образца оказывается достаточно для проведения анализа. Кроме того, в качестве исходного материала для выделения ДНК могут быть использованы кр
овь, сперма, слюна, волосы, костные ткани - любые образцы, содержащие хотя бы несколько клеток.
Имеется ряд причин, по которым молекула ДНК так привлекательна для использования в судебной идентификации.
- Уникальность индивидуальной ДНК.
Каждый человек в мире генетически индивидуален (кроме однояйцевых близнецов). - Генетическое постоянство организма.
Генетическая информация, в отличие от состава белков или жиров, не изменяется в течение жизни, а также в зависимости от типа клеток, из которых была выделена ДНК. - Чувствительность метода.
Для современных методов ДНК-анализа достаточно даже нескольких капель крови, или образца слюны, которой наклеивалась почтовая марка на конверт, или пятна спермы, по площади в 10 раз меньшего булавочной головки. - Относительная стабильность молекул ДНК.
В отличие от белков, являющихся нестабильными структурами, молекула ДНК обладает повышенной устойчивостью к воздействиям окружающей среды. Это свойство ДНК является для криминалистов ценным, поскольку позволяет проводить идентификацию по прошествии даже очень большого срока давности, или же если останки человека не могут быть опознаны никакими другими методами (например, в случае авиакатастроф).